Small Business Innovation Research/Small Business Tech Transfer

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase II

Completed Technology Project (2009 - 2012)

Project Introduction

Conventional software defined radio (SDR) backend signal processors are limited by a priori system definition and RF hardware. Ideally, advanced SDR RF front-end sections would be as flexible as their software back-ends, allowing in-use or in-orbit reconfiguration of original bands and modulation types. The FPMA/UTR proposed herein should meet this challenge. This proposed Innovation is a distillation of Phase I concept evaluations with the goal of yielding a producible and functional prototype with Phase II funding. The proposed RF front-end provides a post-launch, in-orbit reconfigurable RF module and is capable of Hz to >150GHz bandwidth. Benefits include vastly reduced shelf inventory of equipment addressing different RF requirements and permits ever-ready deployment capabilities using a single piece of equipment featuring this proposed RF front-end. The UTR/FPMA's modular open architecture fully complements the flexibility of SDR technology. The UTR/FPMA services communications or radar functionality, narrow (kbps) to ultra-wideband (GHz) modulation bandwidths, center frequencies scalable >150 GHz: herein UHF to Ka band. Small size and exceptional robustness (radiation hardness, reliability) are expected due to low active component count and mainstream manufacturing techniques. The UTR/FPMA RF module uses only conventional technologies but can yield excellent SW&P characteristics.

Anticipated Benefits

Potential NASA Commercial Applications: 1. In flight reconfigurable SDR agnostic RF front end for current and future RF communications and radar EFA, SDST, STDN, SGLS, TDRSS, Lunar Crew Communications, CEV, networked, surface/harsh environment, etc. 2. DOD software defined radio (JTRS, AMF, etc), terrestrial, airborne, naval, Electronic Warfare, C41SR 3. Wideband operation and low power are ideal for cognitive and mobile adaptive ad hoc networked (MANET) communications (802.XX) AS WELL AS TRIDITIONAL COMMERCIAL WIRELESS (GSM/EDGE, CDMA, UMTS-WCDMA, etc) 4. Homeland Security and Emergency inter-network access with a single mobile radio 5. This technology is also feasible for radar, and in particular, in collision avoidance automotive applications. Here the six port is configured as a reflectometer that establishes amplitude and phase relations between RF signals. Using a patch antenna at Ka-band frequencies, the sensor module volume would not exceed 3 cubic inches. Maximum range would be about 20 feet with 2% accuracy.

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase II

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Organizational Responsibility	2
Project Management	2
Project Transitions	3
Technology Maturity (TRL)	3
Technology Areas	3


Small Business Innovation Research/Small Business Tech Transfer

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase II

Completed Technology Project (2009 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas
Space Micro, Inc.	Supporting Organization	Industry	San Diego, California

Primary U.S. Work Locations		
California	Maryland	
Ohio	Texas	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Gary C Jahns

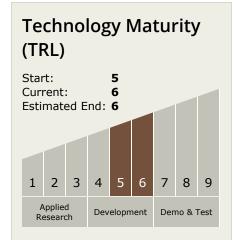
Principal Investigator:

David Czajkowski

Small Business Innovation Research/Small Business Tech Transfer

Low Power Universal Direct Conversion Transmit and Receive (UTR) RF Module for Software Defined Radios, Phase II

Completed Technology Project (2009 - 2012)


Project Transitions

September 2009: Project Start

February 2012: Closed out

Closeout Summary: Low Power Universal Direct Conversion Transmit and Rece ive (UTR) RF Module for Software Defined Radios, Phase II Project Image

Technology Areas

Primary:

- TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 TX05.2 Radio Frequency
 - └─ TX05.2.6 Innovative

